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0. Introduction 

Duriag the last  decade, d i sc re t e  methods -- other  than the claesical 

finite-differences - have gained an iacreas iag  popularity while used €or t h e  

approxha te  so lu t ion  of time-dependent problems. Host noticable,  are the 

(pseudo)spectral and Galerkia methods, e.g. 14-91, [13-14], [l9], [21] and the 

raferences therein. 

The purpose of these notes is to give a uniEied survey oa these three  

clssses of d i s c r e t e  methods - f i n i t e  differences,  s p e c t r a l  aad Galerkia, 

discussing some of the theore t ica l  aspects with regard to t h e i r  accuracy, 

s t a b i l i t y  and e f f i c i e n t  implementation. As a model problem €or our 

discussion, we consider the one-dimensional symmetric hyperbolic system 

Here and elswhere i n  the paper, w’ denotes the transpose of a given vector, 

w flwf=(w w) Ih its Fuclidean nom; similar 

notations are used for  matrices. We w i l l  a l s o  b r i e f l y  mention systems of 

parabolic type, which a re  more favored by the  kind of arguments discussed 

below, due t o  the presence of dissipation. To avoid fur ther  complications 

t h a t  arise with time-discretizatton and handling boundary conditions, we 

restrict our a t ten t ion  to  the periodic method of l ines .  This allows us t o  

make a ra ther  de ta i led  study of various types of approx:mations t o  (0.1). 

where the s p a t i a l  d i f fe ren ta t ion  is replaced by its d i sc re t e  counterpart. 

* * 
i ts  conjugate transpose, and 

We begin, i n  Part  I, discussing f i n i t e  dtc’Perence methods. Our approach 

-- s l i g h t l y  d i f f e ren t  than usual -- emphasizes the matrix representation of 

such methods. The reason is a two-fold one: f i r s t ,  the standard approach via 

Von Neumann analysis is by now c la s s i ca l  and can be €ound in a var ie ty  of 
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references, e-go 1151; second, viewing theae d i sc re t i za t ion8  in t h e  language 

of matrices allow us t o  move qu i t e  natural ly  t o  our discussion on spectral and 

Galerkin methods i n  the second and t h i r d  parts.  Indeed, t he  general i ty  of t h e  

abs t r ac t  d i sc re t e  d i f f e ren ta t ion  operator d e a l t  with in Part f will prevai l  

for  f inite-difference as vel1 as spectral and Galerkin methods. One of t h e  

main object ives  of t h i s  reviev is, in  f ac t ,  t o  show the intimate r e l a t i o n  

between the three: the spectral-Fourier method can be viewed as a s p e c i a l  

centered Eiiiite differencing baaed on an ever increasing umber of gr idpoints  

peridoically extended, and boch r e s u l t  Erm an appropriate choice of b a s i s  

functions used in the Galarkin method. 

W e  focus our a t t en t ion  on the a l l  important question of s t a b i l i t y .  It is 

shown t h a t  antisymmetry per iodici ty  as vel1 a s  a l o c a l i t y  r e s t r i c t i o n  are 

es sen t i a l  propert ies  t ha t  a d i sc re t e  differencing method should share with the 

d i f f e r e n t i a l  problem, €OK the r e su l t i ng  d i s c r e t e  system t o  be s tahle .  "he 

l o c a l i t y  res t r ic tLon can be equivalently expressed by the boundedneas of 

amplification blocks associated v i t h  the highest  modes. The accuracy 

requirement, on the other hand, is determined by the exactness of differencing 

the lover modes. The cordbination of the two guarantee convergence, as t h e  

lover modes carrying most of the information are accurately represented, while 

the highest  modes are not, yet  s t a b i l i t y  assures  us that they are not 

amplified and hence rapidly tend t o  zero, j u s t  as is the case with the 

d i f f e r e n t i a l  problem. 

Roth propert ies  of accuracy and s t a b i l i t y  are well accommodated in 

diecrete  methods having € i n i t e  degree of accuracy; they contradict  each other ,  

however, v i t h  highly accurate methods. We are then led t o  a discuesion on the 

akev-symmetric differencing and smoothing procedures. Both aim a t  dissolving 

t h i s  contradiction by bounding the highest modes' amplification blocks, ye t  
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leaving the  lover ,  accurate modes, unharmed. 

In  Part 11 ve ampliEy these points  vith regard t o  the spectral-Fourier 

method, from still a s l i g h t l y  diEferent point  of view. We base the whole 

s t a b i l i t y  ana lys i s  i n  t h i s  case on the a l i a s ing  formula, r e l a t ing  the Fourier 

coef f ic ien ts  of a given periodic €unction t o  those oE its equid is tan t  

interpolant .  This is the s ingle  must important formula, which dominates the 

question of accuracy versus s t a h i l i t y  i n  t h i s  case. It na tura l ly  a r f se s  with 

the  Fourier method as the a l i a s ing  dilemma, and its usual remedy is agatn by 

e i t h e r  skev-symmetric diEferencing o r  via  smoothing. From t h i s  point  of view, 

Eini te  difeerence methods having f i n i t e  degree o t  accuracy can be vieved as 

spec ia l  cases of the  Fourier method v i t h  a hui l t - in  smoothing which guarantees 

t h e i r  s t a b i l i t y .  

I n  Par t  111 ve discuss Galerkin-type methods. Again there  is an emphasis 

on the c lose  connection v i th  f ini te-difference and spectral-Fourie. methods. 

S t a b i l i t y  follous i n  t h i s  case, due t o  lack of a l ias ing .  Once the exact 

Fourier coe f t i c i en t s  a r e  d iscre t ized ,  ve f i n d  ourselves dealing with exact ly  

the same kind of arguments Cntroduced before. 

Final ly ,  i n  order t o  make these notes self-contained, ve have co l lec ted  

i n  the Appetdix some bas ic  propert ies  of Toeplitz and c i rcu lan t  matrices; 

these play a v i t a l  ro le  in the  foregoing analysis .  
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1. F i n i t e  Difference Operators 

L e t  v(x) be a 2n-periodic wdimensional vector  function, vhoee values 

vu 9 v(xv) are assumed known a t  the  gr idpoints  xv = Vh, h - 2 N' 
v I O,l ,**- ,N- l .  A second order accurate  

der ivat ive,  D v(x), is given by the centered divided 
X 

approximation t o  its 

difference 

When augmented by the per iodici ty  of v, these divided differences are vel1 

defined a t  a l l  gridpoints x = xvs V = O , l , * * * , N - l .  The transformation which 

i n t o  t h e  takes the vector of the assumed knom gridvalues H (vO,--- 

vector of divided differences 3 [E] E (D2(h)[vo],o*o,D2(h)[v~-l])0 is 

l inear ,  and hence has a matrix representation 

SVN-l 

FD2 

here the matrix p2 E F2(h) is given by 



its entries are heing m-dimensional blocks. 

accurate centered divided differences are given by 

Similarly,  fourth and s i x t h  order 

I 4 5 [ v ( ~ t h ) - v ( ~ - h ) ]  - 9 [ ~ ( ~ + 2 h ) - v ( ~ 2 h ) ]  + [v(X+3h)-v(~3h)L 
60h 

with their  corresponding matrix representations 

81 -I o * * * o  1 - 8 1  

0 1  

0 

\, 
O \. 

e\\:'. '\ 

0 

-I 0 

e 

\ . . 

0 I -81 0 
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451 -91 I 0 0 -1 91 - 4 5 r  

0 451 -91 0 I 91 

-451 0 451 0 -I 

0 

0 

0 451 

-91 I 0 0 -I 91 451 0 

91 -451 

0 

I 0 

-. 

Observe t h a t  the matrices are antisymmetric block circulant 

ones; by the latter w mean that their (j ,k) block en t ry  depends only on 

(j-k) [modNI 

g2e, s - 1,2,3 

The above examples i l l u s t r a t e  special cases of a general  28-order 

accurate centered divided difference given by 19, Section 31 

l ikeviae,  it has an a n t i s y m e t r i c  block c i r cu lan t  matrix representation 

E2s 5 D-2s(h) 

Aa s increases,  so does the amount of w r k  required t o  perform the 

m u l t i p l i c a t i m  on the right-hand s i d e  of (1.22e). Tradi t ional ly ,  f i n i t e -  

difference methods are employed with small values of s, s - 1,2,3, requir ing 



a t o t a l  amount oE work of N * s  operations (1 operation - vector addi t ion + 
vector  m l t i p l i c a t i o n  by a scalar). For l a rge  values of s, cZs becomes a 

f u l l  matrix whose mult lpl icat ion requires  an increasing amount of work, up 

t o  N2 operations. This number of operations can be reduced, however, by 

taking in to  acount that the matrix is a c i t cu lan t  one, and as such, can 

b e  diagonalized by the block Fourier matrix P. Specif ical ly ,  let the block 

Fourier matrix F be given by 

GZs 

. .. 

(1.4a) *Im, 0 < j ,k < N-1 1 -ij’kh 
[PIj, = 

with the conventional aotat ion 

(1.4b) II’ E L-n, n 3 i n t e g r a l  pa r t  oE N12, 

t o  be used throughout the paper. We then have (see the appendix €or d e t a i l s )  

with the block diagonal matrix $2s E h2s(h) given by 

Mult ipl icat ion of Q2, i n  i ts  spec t r a l  representation (f.32s) can b e  

e f f i c i e n t l y  implemented by two PFT’s and N sca l a r  mult ipl icat ions vhich 

mount t o  8NlogN operations. 

I n  general, we  consider an abs t r ac t  d i sc re t e  difEetentat ion operator,  

whose matrix representation I= &(h) is only requlred fo r  the two bas i c  
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propert iee  of being an a n t i s y m e t r i c  block c i rcu lan t  one 

(The antisymmetry requirement which corresponds t o  centered type d i f  f erencing 

ie in f ac t  not as essent ia l ,  but w i l l  su f f i ce  fo r  our discussion below.) Such 

matrices admit the spec t r a l  representat ion 

with a block diagonal matrix 5, whose diagonal cons is t s  of the  so ca l led  

amplification blocks 

(1.7a) 

since E is assumed t o  be an t i symet r i c ,  % + $+ = 0, and hence 

The d iscre te  d i f fe ren ta t ion  a s  given by the spec t r a l  representat ion of 
* E,  2-W LF may be interpreted now as follows: from the gridvalues 

A , we have the  d iscre te  Fourier modes vu# given by IOCW<N-1 

then, each one of theee modes is discre te ly  d i f fe ren t ia ted  a s  it multiplied by 

the ampliciation f ac to r  A“’), and fin,rl’.y, the d i f f e ren t i a t ed  modes 
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mult iplcat ion by NF* F-'. 

2. S t a h i l i t y  of F i n i t e  Cifference Approximations 

Replacing the s p a t i a l  der ivat lve in (0.1) by i ts  d i s c r e t e  countc. :part 

D : D(h), we end up with the ticite-diEEerence approximation(') 

iatroducing the block diagonal matrices 

E =  diag[B(YO),***,B(XN-I)], i t  can b e  put in a matrix Eorm 

= diag[ A(xo) , * * *  ,A(%-l)] 

The time-dependent difference equation (2.1) serves as an approximation to the  

diEfetentfa1 prohlem (O.l), in tha sense tha t  any smooth solut ion,  u, of 

( O . l ) ,  satisEtes (2.1) modulo a small l oca l  Liuncation error L(h) L(h;t)  

l%e approximation is said to  be accurate of order a i f  OL(h)l -@[ha]. 

Wjth E - D,2s t o r  example, one ohtains a di f fe rence  approximation which is 

accurate of order 2s. l ~ ~ ~ ( h ) l  -@[h2']. To l i n k  the  local  order of accuracy 

(l)ALao termed as the  method of l i nes ,  t o  d i s t inguish  Erom the f u l l y  
d iscre t ized  prohlem i n  hoth syace and time. 
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with the desired global  convergeoce rate of tile approxfnation, one ha8 to  

ve r i fy  its s t ab i l i t y .  '&et is, the  approximation (2.1) is mid t o  be qteblc  

i f  fo r  e l l  su f f i c i en t ly  small h we have 

Observe that the s t a b i l i t y  de f in i t i on  le independent of the lower order 

term, &, the  reason being that s t a b i l i t y  in the  above oenea is, in fact, 

i n sens i t i ve  t o  such law-order perturbations. This is the  content of the 

following c lnas ica l  per turbat ion lema, whose proof is given here  f o r  

c q l e t e n e e e  as it w i l l  play an eesent ia l  r o l e  in our dfscuasion below. (see 

e.g. 115, Section 3-91. t161 and under a much more general eetup [201)- 

Perturbation l&ma Let  A be a given l i nea r  operator such that 

Then, a l t e r ing  A by adding a "law-c).:der" bomided per turbat ion B, retaius 

the exponent boundedness 

F$*IBI*t 
lexp[(A+B)t]l < K(t), K(t) - KTe , O<t<T. 

- Proof The eolut ion of the  inhomogeneous l i n e a r  d i f f  ereiitial equation 

(2.4a) atw(t) WCt) + G(t) ,  w(t-o)W(O) 

is given by 



Applying (2.4b) with L = A + B and G E 0,  ye then g e t  

hence (2.4a) can be a l so  wr i t t ea  in this case as t h e  inhomogeneous problem 

a t w ( t )  = b ( t )  + Be l(A+a)tlv(0). Applying (2.4b) once more, t h i s  t i m e  with 

I = A and G = Eet(A+a)tlv(0), w e  obtain 

Equating the last tm representations of w(t) which are val id  f o r  a r b i t r a r y  

i n i t i a l  data  u(O), ve a r r i v e  a t  the well-knom i d e n t i t y  

t 
I exp[A(t-5)]*B*exp[ (AM)S]dS. exp[(A+B)t] 5 exp[&] + 

F,=o 

Taking norms on both s ides  w e  Eind 

by Gronvall inequality,  w e  conclude tha t  K(5)dS < 
5=0 

and hence 

which completes the proof. (We remark tha t  similar arguments apply for the  

analogous question which concerns the d i sc re t e  Eramework discussed in 115, 
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Section 3.91 1. 

From the preturbation lema we see t h a t  s t a b i l i t y  is  equivalent to the 

iexp[(&!+a)t]l, or -- what amounts to  the  same thing - to the houndediiess of 

continuous dependence o€ the  d iscre te  solut ion v ( t )  on its h i t i a l  da ta  

indeed i E  s t a b i l i t y  holds i n  the sense t h a t  l e x p [ c t ] n  is bounded, see 

( ? . 3 ) ,  then by the perturbation lemna with A = 

loxp[(&+@t]l. 011 t h e  other  hand, t f  nexp[ (,@+E)t]l is bounded then by t h e  

perturbation l e m u  w i t h  A = &Q+g and B = -E, so is llexp[&t]P. 

and B = 3, so is 

Granted s t a h i i i t y ,  ve can now estimate the  global errcjr 

s(t) 5 n ( t )  - y ( t ) :  subtract ing (2.1) from (2 .2) .  ve f i n d  t ha t  it 1s governed 

by 

3 E(t)  = ( . g+@E(t )  + g l 1 ; t )  t- 

and hence in of the  form 

using the perturbation lemma, we end up v f t h  the error estimate 

Thug, if an a-order accurate approximation is i n i t i a l i z e d  with a-order 

accurate data ,  aK(t-O)l *@[ha], i ts s t a b i l i t y  w i l l  r e t a i n  a-order of 

convergence later on, I H ( t ) l  =@[ha]. 
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Verifying s t a h l l l t y  is our main object ive i n  the  rest oE t h l s  section- 

We start by rewrit ing 

where by the symmetry a€ f i  and antisymmetry OE 2, the Eirst term on t he  

r igh t  i s  antisymmetrlc and, therefore. has a bounded exponent 

hence, by the per tuthat ion lemma.  with the second term on t he  r igh t  vteved as 

a low-order perturhation OF the  Eltst, the exponent OE the sum OE t h e  t w o  

terms is bounded provided the second is 

Thus we are l e f t  with Einding a hound €or the  symmetric p a r t  of 

&p, Re(&) l/2 (&-%), whose (p,q) block en t ry  is given by 

s ince  A(x) is assumed symmetric 27-periodic, #A(x )-A(xq)! 

< h *  Max HA'(x)l*Min[ Ip-ql ,N-lp-q( 1 ,  and hence '/2 (&m) is bounded 

entrywise and therefore  i n  norm, by the matrix whose (p,q) block e n t r y  i a  

P 

04xc2n 

g tven by 



This las t  matrix is a c i rcu lan t  one. In the  appendix yo shw, 8ee Corollary 

(A.8). t h a t  the n o m  oE such matrix does not exceed (and in f a c t  equals,  in 

our  case) the absolute valw sum of its elements along its f i r s t  (p - 0 )  
N-1 

row, ~oMaxlA' (x)~ '  ). Hin[q,N-q]'ld I: reca l l ing  t h a t  

dk + dN+ - 0 ,  we f i n e l l y  end up 4 t h  the  desired hound 

Ls antisymmetric, 
9 

(2.7) 

I n s t e r t i n g  the  last  bound i n t o  (2.G) we f ind  

The above estimate serves as a d iscre te  analogue to the standard ene--y 

estimate one has in the  diEferent ia1 case, diose ahs t rac t  version amounts to  

In the case of a non-constant A, t he  two estiiuates, (2.8) and (2.9), d i f f e r ,  

hovever, in the term h*  }, kldkl appearlng in the f i r s t ;  to guarantee 

s t a b i l i t y  00 assume thts  term to be hounded 

I! 

k-1 

Condition (I) assures us tliet tlie diEferencing operator i e  in a sense 

loca l ,  thus re f lec t ing  the loca l  tiature of d i f  Eerentiacioo Dx. 
The antisymmetry, per iodic i ty  (a c l rcu len t  form) and a l o c a l i t y  

character izat ion are e s s e n t i a l  propert ies  shared by the  d i f f e re t r t i a l  operator,  
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which the d i sc re t e  differencing operator E should retain as uell, fa order  

for an energy estimate (- s t a b i l i t y )  t o  be still val id  under the d i e c r a t e  

F 'UUel.S3rk'lt. 

Regarding the loco l t ty  requirement , ye consider for  example the centered 

d i v i d d  differences Dps for Fixed values of s: these operutore are clemrly 

local as they employ infomatton awtracted from a fixed number of neighboring 

gridr.Luee; t h i s  is also ref lected in t h e i r  matrix representation vhich 

has a f i n i t e  width, v, defined as (see (1.5)) 

Ue have w ( J p Q t s )  = 9. 

Const..h-', and hence the l o c a l t t y  condition (L) is s a t i s f i e d  

Indeed, €or such f t n t t e - u i d t h  operators,  C 

h* ? ), kldkl C Const~w 2 (n_>, 

k- 1 

yie ldfng s t ab le  upproximettons. k s increasas,  however, E28 b e c a e s  a 

f u l l  mstrtx which f a i l s  t o  snt isey the l o c a l i t y  conditton (L). That is not 

to say tirat the nyproxtmation hecomes unstable, since the l o c a l i t y  condition 

we have obtai. id is su f f t c t en t  y e t  unnecessary f o r  s t a b i l i t y .  Suff ic ient  and 

necosstw* l o c a l i t y  conditions which guaranteu s t a h t l t t y  are ,  as much as UB are 

auar.' , not known; we expect, however, t ha t  a l o c a l t t y  condition requiring 

l / k ,  k-l,.**,n, is opttmrl for C2-strbt l i ty  OF 

the  gennrrl  uoriah1g.coeFQictento problem. (We remark that i n  the constant 

coef€ic:m\:  c880 [and in general, v t t h  a d e f i n i t e  coeff ic ient  A(%), vhere 

~ ~ : i ' t t p l i c a t i o n  first by v t l l  hrtng us hack to  the former came], ue 

have HaxlA'(w)t - 0 urrd hence s t n h i l l t y  follows tndependently of a l o c a l i t y  

. - I d k \  t o  decay f a s t e r  than 
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res t r ic t iou . ,  lexp[&t]l < i., see <2.8).) To o v e r c a e  the above di f f icu l ty . ,  

a r i s i n g  with 'honlocal" Pethods, two standard types of r d p  can be erployed 

- skew-symetr+r. differenciug and introducing d i se ipa t ioa  via -thing; we 

d i s c u s  ther n a t .  

3. Stra&pPlmetric Differencing and Smoothing 

The s p a t i a l  pa r t  of the d i f f e r e n t i a l  system (0.1) is - apa r t  from l w  

order term - a skeu-selfajoiat  one 

skersymnet r ic  differencing Is based on exploit ing t h i s  formalism. Rewriting 

(0.1) i n  the form 

and t r y h c i n g  the s p a t i a l  der ivat ive by its d i sc re t e  cmute rpa r t ,  vc end up 

v i t h  the approximation 

The s t a b i l i t y  of the approximation in  Its skew-symmetric form is immediate: 

the € k a t  term inside the curly brackets is  antisymmetric and hence its 

exponent is bounded by 1; by the perturbation lemma,  therefore,  the exponent 

of the sum of  the two t e r n  inside the curly brackets is bounded by the 

exponent of the uorm of the second 



t h i s  is the exact energy estimate one has i n  the d i f f e r e n t i a l  caw. Thus 

skev-symmetric di€€erencing, vhich is also avai lab le  for a vide clase of  

nonlinear problems, [17],  maintains s t a b i l i t y  by re ta in ing  e s s e n t i a l  

propert ies  of the  whole s p a t i a l  operator  A(x)Dx -k B(x) r a the r  than 

d i f f e ren t i a t ion  i t s e l f ;  t h i s  is done, hovever, at  the expense of doubliog t h e  

t o t a l  amount OP oork required. 

An a l t e rna t ive  Less expensive procedure to  maintain s t a b i l i t y  is 

smoothing, a topic  vhich the rest of t h i s  sec t ion  is devoted to. Ve start by 

going back t o  estimate (2.6) where we were l e f t  with bounding the symmetric 

p a r t  of  e, RE(@) ~ 1 h  (@+A). 

Employing the spec t ra l  representat ion of E, vhich ue vrite as 

D, - (N1'2F)*_?(N1h?), see (1.6), ve ohtain 

multiplying by N 'l2P on the l e f t ,  by (N 'I2,)* on the r igh t ,  and observing 

tha t  N1I2P is unitary (e.& (A.6) hrlow), we f ind that the  matrix above is 

u n i t a r i l y  similar and therefore equal i n  norm t o  

Next, ve turn t o  examine the matrix ins ide  the curly brackets, whose (p,q) 

block entry is  given by 

(3 .3)  



using the Fourier expansion 

it can also be expressed as 

( 3 . 4 )  

Having the representation of { (N 1/2P)A_(N 'I2 P)*} i n  (3.4) and reca l l ing  the 

diagonal s t ruc tu re  of i n  (1.71, we conclude on account of (3.2) that the  

matrix l/2(&-%) is equal i n  nom t o  the matrix whose (p,q) block en t ry  is 

given by 

We note tha t  the loca l i t y  conditton (L) can he  deduced again a t  t h i s  stage,  

i f  we are to proceed as follows: Erom (1.7b) ve find 

Since 

Isin(q'kh)-sin(p'kh) I < k*h*M€n[ Ip-ql ,N-lp-ql], 

the matrix i n  (3.5) is bounded entrywise and thereEore in norm, by the  matrix 

whose (p,q) block en t ry  is given by 



The matrix in  the above curly brackets is a c i r cu lan t  one. As before, its 

norm does not exceed the absolute value sum ol its elements along the Eirst 

rov (p=O) - see Corollary (A.8)  below; t h i s  sum i n  tu rn  can be  estimated in  

terms of the der iva t ives  n o m  of A(x). Thus, assuming the l o c a l i t y  condition 

-- h* 1 kl$l < Const. -- w e  conclude t h a t  l/2(&-pA) 

O < t C T ,  have bounded norms, le., s t a b i l i t y .  

n 

k-1 
and hence exp[&t], 

The merit of the representatton (3.5) lies, however, i n  the p o s s i b i l i t y  

of expressing a l o c a l i t y  condition i n  terms of the amplification blocks 

associated with 2, A(k’)oIm, rather than i t 9  e n t r i e s  & *Iq. To t h i s  end ue 

proceed as follovs: 

The matrix i n  (3.5) is writ ten as the sum of two - the first takes the 

zero j-index which w e  revrtte as 

(3.6a) 

the second takes the rest of the  j-indices 

(3.6b) 

It is the property oE the F in i te  diE€erenca methods tha t  the Etrst matrix i n  

(3.6~1) is bounded. par, = 2i*ldksin(  j’kh) represents the d i s c r e t e  

diEferentation of the j’ mode and as such, the  order of magnitude ol t he  

d i f fe rence  I A ( q O ) - A ( p ’ )  I ahould not excced Const. 1 q’-p’I. Hence the matrix 

i n  (3.68) is bounded entrywtse and therefore in nom, by the matrix vhose 

(p,q) element is given by 
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the nom of such a Toepl i t r  aatrir - see Corollary (A.11)  - docs not exceed 

Const.. 1 lO(lA(W)l, which i n  t u n ,  can be  bounded by the  U O ~  of t h e  

der iva t ives  of A(x). Regarding the boundedness of the aecoad matrix in 

(3.6b), we note that for  p-q bounded away from jN,j # OD m y  1p-l 

< m,B C 1, we! have I 1 i(p-q+jN)I < Cy eN-y and hence fo r  theee nonutreme 

h d ~ C e s ,  the e n t r i e s  i n  (3.6b) are a 'p r ior i  bounded - in fac t , they  are 

negl igibly amall. 

p' - T q' - n, A(q'),A(pO). Thus the  

l o c a l i t y  condition amounts t o  the  boundednees of the  amplif icat ion 

blocks, A("*)*Im, associated with the hinh frequencies 1 j'I - n. I f  t h i s  is 

the  case, the matrix '/2 (&a) i n  its u n i t a r i l y  s imi la r  representat ion (3.5) 

is bounded and s t a b i l i t y  fo l lovs  from (2.6). 

N-1 

w10 

, 

For the  rest of the indices ,  when 

ve must require  the  boundednees of 

Ip-qi - N, i & . D  *en 

The above s i tua t ion  is typ ica l  fo r  a l l  d i sc re t e  methods, whose accuracy 

is determined by the  exactness of d i f f e ren t i a t ing  the  low modes, A U ' )  - ij', 
while €or the i r  a t a b i l i t y  we need the  boundednese of 1 A ' j ' ) l  aesaciated with 

the highest  modes, Ij'( - no(2) The combination of the  two guarantee 

convergence, a s  the lov modes carrying most of the information are accurately 

represented, while the highest modes are inaccurately represented, yet  

s t a b i l i t y  assures ua t ha t  they a re  not amplified and hence rapidly tend t o  

zero, j u s t  a s  is the  case in  the d i f f e r e n t i a l  problem. 

The tvo requireaente -- accuracy and a t a b i l i t y  - a re  w e l l  accommodated 

i n  difference methods having f i n i t e  degree of accuracy; consider for  example 

( 2 h t  should be emphasized tha t  t h i s  s t a b i l i t y  r e s t r i c t i o n  ie,  of course, only 
su f f i c i en t .  Its necessi ty  is e t i l l  an open question. 
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the second accurate method vhere ut? have A2 (j’) - ih’lsin(j’h), oee (1.3b2). 

and hence A:J’) - ij’ f o r  Ij’I 

1A;”)I - [h-’sin(j’h) I < Const. €o r  i j’l ... n, I-e., s t a b i l i t y .  ‘Ihe 

s i t ua t ion  is less favorable, however, for  highly accurate mehtods (of order  

N or more): the accuracy requirement A”’) ij’ €or the highest  modes 

cont rad ic t s  the s t a b i l i t y  r e s t r t cc ion  IA(’”1 < Const. as originated from 

the  l o c a l i t y  conditon. Observe thn t  t h i s  la t ter  contradiction still leads  to  

a hound proportional a t  most t o  N, which correaponds in the d i f f e r e n t i a l  caee 

to  the fami l ia r  s i t ua t ion  of “losing one derivative.”(3) 

0, i.e., accuracy, yet 

The smoothing procedure aiming a t  dissolving t h i s  contradiction by 

bounding the amplification f ac to r s  associated v i t h  the high frequencies (or 

more generally - the modes which these amplification f ac to r s  multtply), y e t  

leaving the lover accurate modes unharmed. For example, consider the 80 

ca l led  Shuman f i l t e r i n g  where 

is applied to  the r tgh t  hand s ide  of (2.la). In the Fourier space, It amounts 

t o  the fu r the r  mul t tp l ic t ion  of the j’ mode, by l ~ * ( l + c o s ( j ’ h ) ) ;  t ha t  

is ;, -+ l/2 ( l+cos(j  ’h) 

In other vords, our smoothed d i sc re t e  d t f fecenta t ion  operator n t akes  

the form 

+human 

(%n f ac t ,  as we sha l l  see l a t e r  on, we have a lose of “one-half” derfvattve.  
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with 

which merely says that the amplification fac tors  1”‘) vere replaced by 

(l+cm(j’h)). For the  highest  modes w e  now have t h e  desired 

bouadedness - ia f a c t  [A”’) ‘/2 ( l+coe(jOh)) I * 0 f o r  I j’I no This is 

done, hovever, a t  the  expense lowering the overa l l  accuracy t o  a second one 

-- x(1’)*1/2(l+coe(j’h)) ij’ +@[h2] f o r  Ij’( 0. In general ,  a 

l i n e a r l y  smoothed d iscre te  d i f fe ren ta t ion  operator E* may take the form 

(3.7a) 

with 

(3.7b) 

The requirement of both accuracy and s t a b i l i t y  can be now put i n  the  concise 

*1 f o r  Id’[ bounded away from n (- accuracy) 

+O f o r  Ij’I f n (= s t a b i l i t y )  

f o m  

(3.8) (I (J’) I 

In  [12], Majda et. ale advocated the use of exponential cut-off 

6 emoothinp when dealing v i t h  the propanation of s i n n u l a r i t i e s  in linear 

probl-ms. In  [ l l ] ,  Kreiss and Oliger suggested a nonlinear smoothing, vhoee 

l inear ized version amounts to  a polynomial cut-off of degree In f a c t ,  a 

polynomial cut-off of degree one or  more will s u f f i c e  to  compensate for  the  

loas of one derivat ive ye have observed e*trlier. To work out t h i s  last case 

i n  some d e t a i l ,  f i r  8 e 1 and let 

> 2. 
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(3.9) 

The adjusted amplification fac tors  are now given by A(J’) - A W)&*)* A 

fixed portion of the N frequencies is l e f t  unchanged nainlrining the 

o r i g i n a l  order of accuracy. Regarding s t a b l l i t y ,  we r e f e r  back t o  tue real 

syamtric p a r t  & in  its u n i t a r i l y  equivalent f o m  (3.5), wfrich 4 -  wri t ten  

ae the aum of two, see (3.6): the  f i r s t  

is bounded by the mrm of the der ivat ives  of A(x) as ue aygued before; t h e  

second matrix 

( A  (9’) Q (q*),A (P’) 0 (p‘)) 1 i(p-q+jN) 

is libwise bounded. Indeed, f o r  Ip-ql C ‘-N, it. e n t r i e s  are negl igibly 

mall - they are bounded by N* 1 li(p-q+jN)h C CYpeN-’+’. For 

Ip-ql > - 2 N  we e i t h e r  have p > (1+6)n, q < (1-e)n, Le. p0 > en, 

q’ -@os or, the roles of p and q are reversed. In e i t h e r  case 

[pa l  > @os lq’1 > en and therefore  the latter matrix is eaaent ia l ly  bounded 

entrywise and therefore  in norm, by the matrix whose en t ry  i o  given by 

+ e  P O  

(p,q) 

A d i r e c t  calculat ion shows t h a t  t h i e  matrix is indeed bounded in tern8 of the 

nom of the  der ivat ives  of A(x). 
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4. The Fourier Differencing Operator 

ke before, ve let  4 x 1  be a 2n-periodic *dimensional vector-func-ion, 

whose values vu E v ( 4 )  

xu = %, h = %, t o  simplify the notation ye consider f i r s t  the case of odd 

number of gridpoints,  N - 2n+l, U = 0,1,***,2n. By Fourier d i f f e r e n t i a t i o n  we 

merely mean d i f f e r e n t i a t i o n  of t h e  trigonometric interpolant  of these 

gridvalues. That is, one construct t h e  trigonometric interpolant  

are assumed known a t  the gr idpoints  

(4. l a )  

I 

where the  d i sc re t e  Fourier coe f f i c i en t s  vu are g i v m  by, compare (1.8), 

(4.1b) 

The Fourier d i f f e ren t i e t ion  then takes the form 

The above procedure consiets  of the folloving th ree  basic  steps. F i r s t ,  

transforming from the d i sc re t e  space ( v ~ , * * * , v ~ ~  )’ i n t o  the Fourier 

space of amplitudes : (v * * * , v  1°: 
I I I 

-0’ n 

next, d i f f e ren t i a t ion  in  the Fourier space takes place: 
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vith SF denoting the  block diagonal matrix 

A 

Eiually, the c-Eferent ia ted amplitudes & are transfomed back into the 

d i sc re t e  physical space: 

Added al together ,  t he  Fourier differencing operator  E amounts to 

mu1 t i p l i c a t i o n  by 

(4.4b) P, = NP SFF, 
* 

which can be e f f i c i e n t l y  implemented by two FFT's and N scalar 

mult ipl icat ions requir ing 8NlogN operations. 

An e x p l i c i t  representat ion of the Fourier diEferencing matrix, P,, can be  

obtained by d i f f e ren t t a t ing  the  Interpolant  formula, cf., 122, Chapter X I  

Thus, i t  f a l l s  in to  the category of antisymmetric block c i r cu lan t  matrices 

discwusd above, see (1.5), 



-26- 

with a s p e c t r a l  representat ion given by (4.4). 

c.tcrult ton,  cf., Forenberg 131, shove 

Indeed, a 8 t ra Igh t fo rwrd  

that is, the  Fourier d i f f e renc im can be viewed as a rpecial centered f i n i t e  

differencina.  bared on an ever inereasinn nmber of nr idpoints  extended a 

per iodic  way, E - lidlZs. Caatfnuing v i t h  t h i s  point oE view, yc conclude 

t h a t  while the Fourier differenciag enjoys an " i n f i n i t e  order of accuracy" - 
a statement to be made precise  b e l w  - it is a nonlocsl one. UC would like 

to examine the r o l e  these propert ies  play in the Fourier method, baaad on 

replacing s p a t i a l  der ivat ives  by Fourier d i f f e renc iw .  We star t  by d i s c w i n g  

the a l l  important a l i a s i n g  phenmenon. 

8- 

5. Aliasin& 

L e t  w(x) be a emmth 2n-periodic -dimensional vec tor func t ion .  with a 

formal Fourier expansion 

(5. la) 

where the Fourier coef f ic ien ts  w(w) are given by 

(5.lb) 

Its interpolant  &x) 

i s  given by 

based on the sampled grldvaluee w(x,,),v - O,lm***,2n, 

(5.2a) 
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v i t h  the d i s c r e t e  Fourier coef f ic ien ts  

(5.2b) 

L 

The r e l a t i o n  between the Fourier c o e f f i c i e n t s  V(W) of v(x) and the  

coef f ic ien ts  wo of its interpolant  &x), is contained ~n the following 
A 

Al ias la  Le- For v(x) as above ve have 

(5.3) 

Proof Inser t ing  & l a )  i n t o  (5.2b) w e  ohtain 

By el.- issumed smoothness of v(x), summation can be interchanged, yielding 

aa the second sum in  the middle term is nonvanishing only for  those indices  

P such that  [u-u] - 0 ,  l.e., )1 - w + kN. This completes the proof. 

Next, we consider the e r r o r  betveen the g r l d h n c t i o n  v(x) and i t a  

equidis tant  interpolant  z(x). Rewriting v(x) - [ 1 + 1 ]j(u)eiwx, and, 

v i t h  the help of the a l ias ing  lemma, 
Iwl<n Iwl>n 



we see t h a t  t he  difference is given as the sc1 of tb9 basic 

contributions: the f i r s t ,  the truncation e r ror ,  consisting of the higher 

truncated d e a  for 

v(x) - G(x) 

14 > n 

and the second, t he  a l ias ing  e r ro r  consisting of the higher aliaued modes 

which Yere folded back on the lover ones, 101 < n, because of t he  f i n i t e  

reso lu t ion  of our g r id  

Observe that while the truncatfon e r ro r  invloves modes higher than n, t h e  

a l i a s i n g  e r ro r  involves modes less or equal to n; hence the  tvo are 

orthogonal with respect t o  each other,  and the  s i ze  of t he  d i f fe rence  

w(x) - G(x) is given by 

By Parseval's r e l a t ion ,  t he  two squared terms on the  r i g h t  are given 

respectively by 

(5.5b) 

In bozh terms only the high amplitudes - those associated with modes higher 

than n - a re  being summed. Since these high amplitudes tend rapidly t o  



zero, 1.e.. f o r  smooth w(x) we have I&w)l < C,(L+lw()-' for Ury Y > 0, 

it followr that the tu0 terms have the sane error contr ibut ion of order  

C;NbY+". Likeuise we f ind that the der iva t ive  of ~ ( x ) ,  a,v(x), d i f f e r s  

from t h e  differeneiated interpolant ,  axG(x) by 

As pointed out above, the Fourier di f fe renc iug  which is of order C N 

o f  u(x) is in fact the exact d i f f e r e n t i a t l o n  of the  interpolant  z(x). UC 

therefore  conclude that the  errar we commit by d i f f e r e n t i a t i n g  w(x) r a t h e r  

than d x )  is of the  negl igtbly small order Cdhs f o r a  6 > 0. It is in 

t h i s  sense that ue say the Fourier differencing has " i n f i n i t e  order accuracy." 

Final ly ,  we use the a l ias lng  lemma t o  show the  isometry between the 

d i s c r e t e  and continuous space €unctions. Precisely,  consider t h e  d i s c r e t e  

space of gridfunctions p - ( ~ ~ , * * * y ~ ~ ) ~ , h  - (LO, * * *  ,Z2n )' equipped with t h e  

d i s c r e t e  inner product (e,*) 

(-v+2 1 
Y 

- 

(5.6a) 

as the d i s c r e t e  analogue OF the  space o€ ZIT-periodic vector  functions,  

y(x) , d x )  v i t h  

(5.6b) 

The above mentioned lsometry now takes the concise Eorm 

(5.7) 



of amplitudes associated with al iaaed modes higher tho0 2n, 1 ;[k(ta+l)]* 
k+O 

This 8- is vaaishiqg, however, since v(x) being a t r i gonora t r i c  p o l y ~ 0 l i . l  

of degree 2n at IoBt, coataine no modes higher than 2n. 

6. S t a b i l i t v  of the Fourier Method 

I n  t h i s  sec t ion  SE study the s t a b i l i t y  of the Fourier method &ere 

spatial d i f f e ren t i a t ion  i n  (0.1) is car r ied  out  by Fourier differaacin8g,  

According t o  the perturbat ion lemaa we can uafely neglect the lar-order term 

assuming B - 0, and hence our approxhmtion takes the fo r6  

(6 .h )  

with the operator L given by 

(6. lb) L 9 A(x)Dx. 

Indeed, the s t a b i l i t y  question as discussed above is re levant  here, id., the  

unboundedness of the amplif icat ion blocks, see (4.4a). Ai'.) - ij'*Im 
requires  smoothing of the highest modes, i n  agreement with the  nonlocal i ty  of 

the method, see (4.61, he 1 k l c ) I  -@(l/h). The representat ion given below 
k- 1 

is from a somewhat d i f f e ren t  point of view, and in  f ac t ,  i t  is the  one that 

motivated our discuesion i n  Section 3 above. 
* 

Multiplying (6.la) by hv, and summing over a l l  gr idpotnts  we obtain 



Taking real parts on both s ides  and making use of the  i soae t ry  conclubd in 

Section 5 ,  ue find 

The cruc ia l  s t ep  nov, involves s p l i t t i n g  the r i g h t  hand s ide  in to  the .sum of 

tvo terms: the f i r s t  cons is t s  of the exact d i f f e ren t i a t ion  

* N &  (6.3a) 2Re[(LG,v)] = ([L+L ]v,v), 

the  second cons is t s  of the deviat ion from the exact d i f f e ren t i a t ion  

(6.3b) 

tha t  is we have 

ru 
& L L  

2Re [ [ Lv-Lv,v) ] ; 

i n  complete analogy t o  the s p l i t t i n g  of the matrix in (3.5) i n to  (3.6a) and 

(3.6b) as  we introduced before. 

That the Eiret  term in (6.3a) is bounded by Const.l”v2 is a property 

L, ca l led  semi-houndedness, which can be so le ly  of the d i f f e r e n t i a l  operator 

e a s i l y  ver i f ied  in our case by in tegra t ion  by par te ,  
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i n  complete agreement v i t h  the exponential behavior indicated i n  (2-9). 

ve are l e f t  v i t h  estimating the second term i n  (6.3b). It is exact ly  t h i s  

term which measures by hov much ve deviate  from the  d i f f e r e n t i a l  energy 

estimate d o s e  abs t rac t  version quoted in  (2.9). 

!Chi* 

To t h i s  end ve recall tha t  the  d i f fe rence  betveen v - LG and its 

interpolant  v = Lv cons is t s  of tvo basic contr ibut ions - the  t runcat ion 

e r r o r  (5.4a) and the a l i a s ing  e r ro r  (5.4b). The point  t o  note here is that 

the truncation e r r o r  being the sum of modes higher than n, is orthogonal to 

the a-degree interpolant  v, an4 hence its contr ibut ion t o  the deviat ion t e r m  

(6.3b) is completely suppressed. In other  mrds ,  it is so le ly  the a l i a s i n g  

e r ror  in the  representat ion of the d i f f e r e n t i a l  operator L - or what amounts 

to  the same thing, of the coef f ic ien t  matrix A(x) - which determines the 

s t a b i l i t y  of the d i i c r e t e  approximation (6.1). To see how it comes ahout one 

compute the amplitudes oE L s  a s  the convolution sum 

- e  

h 

hence the a l i a s ing  e r ro r  is given by, see (5.4b) 

Multiplying by and makin8 use of Parseval r e l a t ion  ve f ind  

taking the symmetric par t  ve f i n a l l y  conclude tha t  
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Our aim is trying t o  estimate the right-hand s i d e  in terms of 

doing, then together v i t h  (6.5) ve vi11 end up v i t h  an energy estimate 

- by so 

whose in tegra t ion  assures us the continuous dependence of t he  solution on its 

i n i t i a l  data, i.e., s t a b i l i t y ,  see (2.5) 

(6.7b) Uy(t)n2 US(t)U2 C K(t)*8vh(0)U2 : K(t)*lx(O)fl 2 . 

To assert tha t  the right-hand s ide  of (6.6) does not exceed Const.lGl12 

L Const.*I I V , ~  f o r  poss ib le  amplitudes vu, is, by de f in i t i on ,  

equivalent t o  assert the boundedness of the matrix whose (p,q) en t ry  is 

given in the  above curly brackets 

l w l c n  

compare with (3.6b). The above terms represent the  pure e f f ec t  of a l i a s ing  on 

the coef f ic ien t  matrix A(x) - in the constant coe f f i c i en t s  case, €OK 

example, no a l i a s ing  occur, A(o) = 0, w f 0, so the  terms in (6.8) and hence 

tha t  in (6.3b) are vanishing which agrees with the earlier deduced s t a b i l i t y  

in t h i s  constant coef f ic ien ts  case. Returning t o  the  general var iab le  

coef f ic ien ts  case we f i r s t  note - regarl'mg the  (p,q) en t ry  in (6.8) - 
tha t  fo r  Ip-ql bounded away from 2n, lp-ql < 0*2n, 0 < 1, these e n t r i e s  are 

negligibly small, since by the smoothness of A(x) we have 
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however, when Ip-ql approaches 2n. t h a t  is, when 

versa, 1 i[p-q+k(2n+l)] contains the  lover  modes of 
k#O 

are of size & I ) ,  and hence these e n t r i e s  are of 

p h  and q+-n or vice 

A(x) whose amplitudes 

s ize  @(N=2n+l) - 
matrix whose (p,q) entry is given i n  (6.8) is, therefore.  unbounded, no 

matter how smooth A(x) a. Consider f o r  example the case where A(%) 

cons is t s  of only one mode - the only nonzero e n t r i c s  i n  (6.8) are then the  

(p,q) - (h,'n) ones, given respectively by TZnA(hHl), which amount t o  the 

unbouudedncss of d. (Putting it in  a d i f f e ren t  way, w see that in cons t ras t  

t o  loca l  f inite-difference methods, compare (2.7), Re(&) '/.. (E-@) is  

unhounded, no matter how smooth A(x) is; indeed up t o  uni ta ry  s imi l a r i t y  -- 
the  latter d i f f e r  from e $  by the bounded term i n  (6.3a)). 

Nevertheless, the above unboundedness does not necessarily imply 

i n s t a b i l i t y ,  as much a s  it indica tes  the shortcomings of the above method of 

proving it. We observe tha t  the d i fCicul ty  arises when t ry ing  to  estimate 

the (p,q) e n t r i e s  with pfn and q+-n or v ice  versa,  i n  e i t h e r  case, when 

Ipl ,191 - n. These a l iased  e n t r i e s  i n t e r a c t  v i t h  amplitudes associated with 

high modes v v see (6.6), which a r e  expected -- if the method is s t a b l e  -- 
t o  be of a negl ig ib le  mal l  size.  That is, despi te  the unboundedness of &? 
in (6.8), we can still have the houndedness of the a l iased  tern i n  (6.6) 

provided a' priort information on the decay r a t e  of is a t  our 

disposal;  i t  is vel1 know, however, t ha t  the L2-nom U"v2 is too weak t o  

derive such an a' p r i o r i  information. 

** * 

P '  4' 

\ v u \ ,  I W l  - n 

With t h i s  an mind, smoothing cay be viewed a s  a procedure aiming a t  

giving us such a' p r i o r i  information about the size of the h ighes t  

aaqli tudes.  Conaider for  example the case vhere A(x) cons is t s  of fixed 
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number, say r modes; then smoothing by c u t t i n g  a fixed number of modes - 
t he  last r ones, vu - 0,  Iul>n-t -- w i l l  guarantee s t a b i l i t y ,  as the term 

i n  (6.6) w i l l  vanish i n  t h i s  case. ( In  pa r t i cua l r ,  h e n  r - 1, one only 

needs t o  estimate the last  amplitude v . I n  the  case of even number of 

gridpoints,  such an estimate ex i s t s ,  s ince  E being ac even order 

antisymmetric matrix has a double zero eigenvalue; t h i s  leads to  the  

H1-stability i n  t h i s  case derived in  [71.(4)\ 

as the  l i n e a r  cut-off introduced i n  (3.9) w i l l  su f f i ce  €OK s t a b i l i t y .  

A 

A 

n 

I n  general, 8; milder saaoothing 

I n  closing t h i s  section, we  remark tha t  by rewrit ing (6.6) i n  the form 

where the matrix i n  the l a s t  curly brackets is boun8ed. then together with 

(6.5) we are lead t o  the estimate 

That is, there  is a los s  of "one-half" derivative.  I f  some d iss ipa t ion  is 

present i n  the system, e.g., with L - A(x)Dx + D2, the of one dei'ivative 

Erom the second s p a t i a l  d i f f e ren t i a t ion  dominates, and we end up with the  

desired s t a b i l i t y ,  e.g. [11]. 

(4) See the appendix for  de ta i l s .  
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7. The Galerkin Procedure 

In  t h i s  sect ion we start discussing the Galerkin procedure, whose bas i c  

idea is t o  reduce our I n f i n i t e  dimensional d i f f e r e n t i a l  problem by p r o i e c t i n q  

it on a finite-dimensional subspace. Let  the latter be spanned by a system of 

l i n e a r l y  independent 2*- periodic functions $,(XI, -n < p n. 

To project  (O.l), we seek for  approximation of the form 

(7.1) 

(5 9 2p) 

sa t i s fy ing  (e - L ~ , $ ~ J  = 0, p=-n,***,n. 

In se r t ing  (7.1) i n to  (7.21, we  obtain f o r  the vector of generalized Fourier 

coe f f i c i en t s ,  y ( t )  = (v(-n,t) ,***,v(n,  :))', the  following system of ordinary 

d i f f e r e n t i a l  equations 

A A 

(7.3a) 

here, H and G are (2n+l)- dimensional block matrices whose (p,q) e n t r y  

is given respect ively by 

(7.3b) 

The s t a b i l i t y  of the resul t ing system is a d i r e c t  consequence of the 

semi-houiidedness of the d i f f e r e n t i a l  operator L, c f .  ( 6 . 5 )  - Lntegration by 

p a r t s  yields 
* 2 

R~(LW,V) ~ 1 / *  ([L+L ]w,w) c Corist*'Iwn , 
f o r  any 2n-periodic vector-function w(x). Indeed, multiplying v(p, t )  by 

A 
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(7.2p), adding and taking real par te  we f ind  

in tegra t ion  of the  laat inequal i ty  gives  ue the ueual s t a b i l i t y  estimate - 
coapare (2.9). 

Unleee chosen with care, the has ie  function8 Ok(x) may lead t o  an ill- 

conditioned mass matrix, H, d o s e  inversion required in (7.3a) can be r t i l l  

found numerically diesst tous.  The m o e t  ertensivel.y s tudied choices of basis 

functions which avoid such s i tua t ions  a re  essential1.y two. The f t r a t  usea 

- l oca l  base functions induci:;g sparse, well-behaved mass matrices, leading t o  

f in i te -d i f  ference/finite-element l i k e  methods ; the  second uses global ,  

orthonormal base functions like 

where the mass matrix reduces t o  the ident i ty ,  H - I. We continue by 

discussing the lat ter case. 

The expansion we seek in (7.1). amounts nov t o  the truncated Fourier . 
expansion, whose Fourier coef f ic ien ts  v_(t) a re  determined by the Galerkin 

procedure 

(7.4a) 

where G is given by 

(Aa before, see (6.lb). we have neglected the lover order term assuming L - 
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A(x)Dx 10 I& remark that implementation of the Galark'h procedure CUI ba 

zar r ied  out faat, i.e., using & (NlogN) operatione, p rwided  the exact 
L 

Fourier coef f ic ien ts  A(@) , IwICn, are given. Fur, the procedure coor i r t8  of 

t w D  baeic  steps: f l r s t ,  d i f f e ren ta t ion  vhich i e  t rans la ted  here t o  

mul t ip l ica t ion  by the  diagonal matrix is taking place, 

requir ing N - 2n+l operations; and next, multiplicairioe by A(x) re f lec ted  

an a convolution sua i n  the  Fourier apace is i n  order, which requires  

mul t ip l ica t ion  by the  Toeulite marrix A(p-q) - indeed, aul t ipl iccr t ion by 8 

general Toepl i t t  matrix can be carried out f a s t  vhur f i t s t  imbedded i n t o  a 

c i r cu lan t  one, see the appendix fo r  de ta i l s .  

To obtain the Fourier coef f ic ien te  

$,[&Iqn - iq*Im 

* 

(7.5) 

one map uee d i f f e ren t  quadrature ru l e s  approximating the in t eg ra l  on the 

right-hand side. This in tu rn  leads to  a whole va r i e ty  of d i sc re t e  Galerkin 

methods which include the Fourier method a8 a spec ia l  caae. 

8. Diecret izat ion 

The Four ie rGalerk in  procedure in  a component-vise form reads 

(8. la) 

A 

vhere A(@) is the  Fourier coef f ic ien t  

(8. lb) 



To appronimate the in tegra l  in the right-hand s ide,  rre use the trapttoldal 
2n rule, based 011 the N * 2d-1 equid is tan t  pa in ts  xv - %,h - - N' 

s ince  N x )  is assummed periodic, the t rapezoidal  ru l e  serve8 our purpose as 

any other  high-order quadrature r u l e  - in f ac t ,  it is " In f in i t e ly  order  

accurate" in  the precise  sense discussed i n  Section 5 above, cf. 12, Section 

2-91 

Introdvcing the approximation (8.2) i n t o  (8.la), w e  f ind t h a t  the term 
n 

A(p-q) is replaced by, see (3.3) 

thus. the above d iscre t iza t ion  r e su l t  in a system of ordinary d i f f e r e n t i a l  

equation €or the vector of unknown amplitudes, still denoted here  by v_, 
n 

This i e  exact ly  the Fourier method €or the d i sc re t e  Fourier amplitudes 

br ings it back in to  its famil iar  form in the physical space, see (4.4b) 

That i e ,  the  exact spatial d i f f e ren t i a t ion  is car r ied  out on the interpolant  

v, compare (6.la). 
L 
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TO s m r i t e ,  ye have seen that equid is tan t  approxirat ion of (8.3) bamd 

on N gridpoints  reduces the  Iburier-Gslerkia  procedure in to  the Fourier 

method; the  difference between the tvo l ies  exact ly  i n  the  aliasing term 
I 

1 A(p-q+jN) - according to ( 3 . 4 ) .  t h i s  is the exact d i f fe rence  betwcea the 

r i g h t  and left-hand s ides  of ( 8 . 3 ) .  Siuce the Fourier-Galerkia procedure uds 

shorn t o  be s tab le ,  ye thus shed a d i f f e r e n t  l i g h t  on the  conclueion that 

s t a b i l i t y  of the Fourier method is solely determined by a l i a s ing  errors .  To 

suppress the  l a t t e r ,  one may e i t h e r  smooth or. a l te rna t ive ly ,  d i sc rc t l ze  the 

i n t e g r a l  on (8.lb) using more than N gridpoints-  We tu rn  m v  t o  discuss  the 

d e t a i l s  of the  latter case. 

3% 

2r Let H - (l+E)N be the nmber of gr idpoin ts  xy - uh,h - 7 

~ 0 , 1 ; * * H - l s  and use t o  t rapezoidal  ru l e  to approximate 

vhen inser ted i n t o  ( L l a ) ,  the r e su l t i ng  system is given by 

(8.7a) 

Here, ve adopt the notat ion of the d i sc re t e  Fourier coe f f i c i en t s  fo r  the 

computed amplitudes, v,(t), in the s p i r i t  of e a r l i e r  agruments. Observe that 

the  matrix whose (p,q) entry, -n<p,q<n, is given in  the last cur ly  brackete, 

is not a c i rcu lan t  anymore a s  i n  the Fourier case where H - N, ye t  its 

mul t ip l ica t ion  as a Toeplitz one can he car r ied  out fas t .  To v e r i f y  

s t a b i l i t y ,  ue rewrite the (p,q) en t ry  in the  l a s t  cur ly  brackets  with the 

help of ( 3 . 4 )  

1 



(8.7b) 

As usual, we break the second elrmation i n t o  tm p a r t s  

the f i r s t  corresponds t o  the 8-1-bounded d i f f e r e n t i a l  operator a d  can be  

estimated as before, while the second represent the pure e f f e c t  of aliasing 

which in t h i s  case is completely controlled s ince by the suMthneaa of A(x) 

w e  have 

Indeed, a second look i n  (8.7b) reveals  that the approxiaation (8.7) CM be 

vieved a s  the standard Fourier method based on H modes, the  last (l+E)''bI 

of which were cut  off (in the notation of (3.8), ve have 

(l+s)"H < IJI < H 1 

0") * 0 f o r  

- such smoothing guarantees s t a b i l i t y .  
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A. On ToeDlitz and Circulant Hatr ices  

In t h i s  sec t ion  we record sme uell-ltnow i u f o r u t i o a  about Toepl i t r  apd 

c i r cu lan t  ratricee which proves useful  v i t h i n  the diacuasion above 

A block Toeplitz mtrh s coas is te  of m-direasioaal block en t r l ee ,  

t he  (j,k) of which depends only on its dis taace  f r a  the Mi0 

Thus, a Toeplitz matrix is coapletely determined by a (ZN-l)-dhetoaal 

vector  5 

*dimensional blocks. 

(tl,N,*..,tr),**-~,l), its en t r i e s ,  tQ, - ( t & l ) < E < ~ - i ,  are being 

If fur ther ,  the  vector t is defined on its negative indices  aa the  

per iodic  extension of the pos t t ive  ones, t,ll - t ~ - ~ ,  O d < N - 1 ,  ice., 4 k  oalp 

depends on (k-j)[moWl, then the matrix is a block c i r cu lan t  



Thus, a circulant matrix is canpletely determined by a N- dimensional vector 

- c 5 ( c ~ , * * * , % - ~ ) ,  tts entr ies ,  ca, 0 < a < N-I, being m-dinensional blocks- 

The essent ia l  ingredient In studying circulant aatr ices ,  is that they 

admit the spectral representation 

Here, P denotes the block Fourier matrix, compare (1.4) 

with the conventional notation 

(A. 4b) e- = e-n, n integral part of N I 2 ,  

and A is a block diagonal matrix given by 
-C 



Verif icat ion of (A.3) is a s t ra ight forvard  one - t he  (j,k) ent ry  of t he  

right-hand s ide  of (A.3) amounts t o  

the second summation on the  r igh t  is vanishing unless 

unless L - (k-j)[modN] where 

E+j-k = O[madNl. i-e., 

Consideration of the block iden t i ty  matrix 

c = (I,,Om,**~O m ), gives us from (A.3) and (A.5) t ha t  

IN as a c i r cu lan t  one, with 

t h a t  is, the  matrix N1/2P is a uni ta ry  one. Since the spectrum and the %- 
norm of a matrix a re  invariant  under such uni ta ry  transformatione, i t  follows 

€torn (A.3) that for general c t r cu lan t  matrices, $$? , both are iden t i ca l  with 

those of block diagonal fit. I n  par t i cu la r  ve have 

Lemma (A.7) For a block c i r cu lan t  matrix $$?k) w have 



Proof The norm of a block diagonal matrix is given by the  l a rges t  norm 

of its diagonal en t r ies .  Cosmetic reindexing of these  diagonal e n t r i e s  in  

(A.5) gives us  (A.7). 

As an immediate coro l la ry  w e  have 

Corollary (A.8) The norm of a sca l a r  c i r cu lan t  matrix does not exceed 

the  absolute value SUN of its elements along its f i r s t  row. 

- Proof In f a c t ,  from (A.7) we have the more general  

The coro l la ry  is j u s t  a restatement of t h a t  last inequal i ty  fo r  the  scalar 

case, where c 9. = C9.'Zm. 

Next, ve employ the  information j u s t  obtained €or c i r cu lan t  matricee, €or 

Toeplftz ones, v i t h  the help of the bas ic  

Lemma ( A . 9 1  Any N-dimensional block Toeplitz matrix can be imhedded i n t o  

a 2N-dimensional block c i r cu lan t  one. 

- Proof consider the block Toeplitz. mattix g= $&) with 

- t = (tl,,***,ta,**.,tN,l). Denote L- - (t14,***,t-l), 

) and define the associated Toeplttz matrix - t+ = (tl,"*t N-1 

E - $~',B,L-) where s can be eny fixed block. It i e  readi ly  

ver i f ied tha t  



(A. 9a) 

is a 2N-dimensional block circulant  

in entrywise form we have 

0 . .  

. .  
2-N . .  

5 - N  

t . . .  
2 

Remark Rewriting in 

5 - 2  %-1 

%-2 

t-l 

t-2 t-l 

t-2 . 
1-N 

tN-l 

s 

5-1 . 

t-l 

2 4  

t l -N  

5 - N  

2-N 

. 

t-2 

tN-l 

$I-2 

t-l 

the imbedding was made psooible hy the process of per iodic  doubling. 

Making use of Lemma ( A . 9 ) .  w e  have 

- 
t-l 

t-2 . . 
1-N 

8 

5-1 

5 - 2  . 

- 
fies that 

Corollary (A. IO) b l t i p l i c a t i o n  of an N-dimensional hLock Toeplitz 

matrix can he implemented 'fast' ,  i - e . ,  using @(NlogN) block operations. 
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- Proof we want t o  compute - $E, where $ is an N-dirensfonal 

Toepli tz  matrir and E a given N-dimensional vector. For that purpose, 

irbed i n to  @?= ( ") and compute ge = @E*, a* - (z,$)* - 
as being a c i rcu lan t ,  t h i s  last mul t ip l ica t ion  can be implemented f a s t  

YtcT 

using i t a  spec t ra l  representat ion (A.3) with tvo Fpp's requir tug 

operations. The first N components of t are then the  desired vector  g. 

&NlogN) 

Corollary (A.ll) For a block Toeplitz matrix g&) ye have 

(A. 11) 

4- - Proof Imbed ,%tJ Into @?(cJ with E = (to,& , O , f )  we then have 

from Lemma (A.7) 

Inser t ion  of the  spec i f i c  values of the blocks 

the upper-bound on the  right-hand s ide  equals 

cI1 in t h i s  case, shows that 

N-1 id!&' n 
N-1 ijf+ 2N-1 ijt2 

Max II 1 e + (-1)'*O + 1 e N-tE-2Ni Max 1 e N * t g l ,  
O<jCW-l b o  hN4-1 Ocjc2N-1 k?-(N-l) 

- Remark Making use of the freedom in choosing the block e along the 

main diagonal of the associated Toeplitz (which wae taken t o  be zero 

above), we e imi la r i ly  get  



Corresponding t o  Corollary (A.8) we have 

Corollary (A.12) Tlie norm of a scalar Toepl i tz  matrix does not exceed 

the absolute  value s m  of its elements along its f i r s t  an3 last rows. 

B. The Fourier Hethod - The Case of Even Number of Gridpoints 

The Fourier method is usual ly  implemented with an even number of 

gridpoints ,  N - 2n; to  be exact, with N being an i n t eg ra l  power of 2, i n  

which case the Cooley-Tukey var ian ts  of FFT a r e  optimal. Here ye record the 

s l i g h t l y  d i f f e ren t  formulas governing t h i s  case. 

Assume vu a re  know gridvalues  a t  xu = vh, h -2" E 2! ,, v-o,1,..*2n-1. 

Their Fourier d i f  ferencing amouonts t o  d t f f e ren t i a t ion  of t he i r  trigonometric 

in te rpolan t  

(B. l a )  

Here, the double prime denotes, as usual, halving the f i r s t  and last terms, 

and the d i sc re t e  Fourier coef f ic ien ts  vu a r e  given by 
1 

(8.lb) 

An e x p l i c i t  

transforming f 

representat  ion 

( vo , *V 211-1 1' 
of the  Fourier differencing matrix E 
i n t o  a,[x~ ( D ~ V J  , * * e  

* * 
)*, can , DxVl 2n -1  xO 

be obtained by d i f f e ren t i a t ing  the interpolant  formula, e.g. [22, Chapter X I  

giving 
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Ae a block c i r cu lan t  matrix. i t  admits the spec t r a l  representat ion 

Observe that zero is a double eigenvalue i n  t h i s  case - this is necesaairly so 

as E being an antisymmetric dimensional rnatrlx, havlng the  o the r  

complex eigenvalues in  pairs. The l e f t  eigenvectors correspondins t o  the 

double zero eigenvalue are 

(B.5b) 

asser t ing  the exactness oE the  d i f f e ren t i a t ion  (B.3) fo r  :(r) CoMt. and 

G(x) - cos(nx), reepect ively (compare [7, Lemma 1.111. 

The Fourier method for  (0.1) v i t h  L - A(x)D,, is of the fora 

S t a b i l i t y  ana lys i s  in t h i s  case is s imi la r  t o  tha t  introduced in  Section 7 for 

the case of odd number of gr idpoints .  That is, t o  emtimate the real ayraaPatric 

pa r t  of ( L v , ~ ) ,  see (6.2). ve use the a l i a s ing  fomula  vhich still reads, see 

(5.3) 

e- 
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leadiag un t o  an eXaMiMtfOn of the a l i a s i n g  term, see (6.6) 

In t h i s  caae, however, we have a p r i o r i  inforreation about the  lmt  d iacre te  

Fourier coeff ic ient  vn. To see how it  comes about, multiply (8.6) by E on 

the  l e f t ,  and rename the new var iab le  2 = a for  which we find 

A 

next, mult ipl icat ion by 

t h a t  (E(n))*x(t) - vhich, by def in i t ion ,  coincides with 

i h ( t )  9 2y-1wvcos(nxv) - r e w i n s  constant in t i m e ,  ;*(t) - ~ ~ ( t - 0 )  -0. 

Thus, returning to the a l ias ing  term in (B.7), it is enough to  slllp only t h e  

( E ( ~ ) ) *  on the  l e f t  and using (R.5b) ve conclude 

v=o 

f i r s t  (n-1) modes 

In particular, if A(x) contains only one mode, the vanishing right-hand r i d e  

r e s u l t s  in the desired energy estimate for  - & which in tu rn  smounts t o  

M H1- s t a b i l i t y  in t h i s  case - see t71. 
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